

CORPORATE

ISTITUTE OF SCIENCE AND TECHNOLOGY, BHOPAL

IMPORTANT FORMULA (Engg. Mathematics -II (BT202) Unit-3

Faculty Name : Akhilesh Jain

Syllabus

Definition, Formulation, Solution of PDE (By Direct Integration Method & Lagranges Method), Non-Linear Partial Differential Equation of First order {Standard I, II, III & IV), Charpit's General Method of Solution

PARTIAL DIFFERENTIAL EQUATIONS:

An equation relating a dependent variable to one or more independent variables by its derivative with respect to the independent variables is called a differential equation.

Ordinary differential equation (ODE) has only one independent variable while partial differential equation (PDE) has two or more independent variables.

Examples of ODE and PDE are:

Examples of some important PDEs:

(1)	$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$	One-dimensional wave equation
(2)	$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$	One-dimensional heat equation
(3)	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$	Two-dimensional Laplace equation
(4)	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$	Two-dimensional Poisson equation

Formation of partial differential equations :

1. By elimination of arbitrary constants:

Let f(x, y, z, a, b) = 0 be an equation which contains two arbitrary constants 'a' and 'b'.

Therefore partially differentiate the equation w.r.t. x and y to eliminate the constant 'a' and 'b'.

Remark: If the number of arbitrary constants is grater than the number of independent variables, then the order of partial differential equation obtained will be more than 1.

2. By elimination of arbitrary Functions: Apply same procedure as above to eliminate arbitrary function.

Note: we use following notations in PDE

$p = \partial z / \partial x$ $q = \partial z / \partial y$ $r = \partial^2 z / \partial x^2$ $s = \partial^2 z / \partial x \partial y$ $t = \partial^2 z / \partial y^2$

- Q 1. From the partial differential equation by eliminating the arbitrary constants from the following
- (1) z=ax+by+ab[Ans: z=px+qy+pq] (2) $z=(x^2+a)(y^2+b)$ [Ans: pq=4xyz]
- Q 2. From the partial differential equation by eliminating the arbitrary function from the following

(1)
$$z = f(x^2 - y^2)$$
 (2) $z = y^2 + 2f(\frac{1}{x} + \log y)$ [Ans: $x^2p + yq = 2y^2$
[Dec.03,Jan.06,Dec.10, June12]
(3) $z = f(x+iy) + g(x-iy)$ Ans: $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$ [Dec. 2003, 2006June 2012, Dec. 2014]
Q 3. Form Partial differential equation $z = e^{xy}f(x-y)$ [Nov. 2019]
Q 4. Form Partial differential equation $z = f(y/x)$ [Nov. 2019(o)]

Solution of a Partial Differential Equation:

A function u is called a solution to a partial differential equation whenever the equation becomes an identity in the independent variables upon substitution of u and its appropriate derivatives in the partial differential equation.

Let us consider a Partial Differential Equation of the form F(x, y, z, p, q)=0

If it is Linear in p and q, it is called a **Linear** *Partial Differential Equation*. (*i.e.* Order and Degree is one) If it is Not Linear in p and q, it is called as *nonlinear Partial Differential Equation* (i.e. Order and Degree is other than one)

Types of solution:

(a) A solution in which the number of arbitrary constants is equal to number of independent variables is called

complete integral or complete solution.(By eliminating the arbitrary constants and from this equation we get

F(x, y, z, p, q) = 0 which is called complete solution).

(**b**) A solution of F(x, y, z, p, q)=0 obtained by giving particular values to *a* and *b* in the complete Integral is called a *particular Integral*

In complete integral if we give particular values to the arbitrary constants we get particular integral.

(c) Singular integral: let f(x, y, z, p, q) = 0 be a partial differential equation whose complete integral is

Differentiating (1) partially w.r.t a and b and then equate to zero, we get

$\partial \Phi / \partial a = 0$	(2)
$\partial \Phi / \partial b = 0$	(3)

Eliminate a and b by using (1), (2) and (3).

The eliminate of *a* and *b* is called singular integral.

LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER

A Differential Equation which involves partial derivatives and only and no higher order derivatives is called a first order equation. If and have the degree one, it is called a *linear partial differential equation of first order*; otherwise it is called a *non-linear partial equation of first order*.

Ex: 1) yzp + xzq = xy is a linear Partial Differential Equation.

2) $x^2p^2 + y^2q^2 = z^2$ is a non-linear Partial Differential Equation

LAGRANGE'S LINEAR EQUATIONS: A linear Partial Differential Equation of order one, involving a dependent variable z and two independent variables and y, and is of the form

where P, Q, R are functions of x, y, z is called Lagrange's Linear Equation.

To solve this equation it is enough to solve the subsidiary/ auxiliary equation

If the solution of the subsidiary equation is of the form $u(x, y) = c_1$ and $v(x, y) = c_2$ then the solution of the given Lagrange's equation is $\Phi(u, v) = 0$.

To solve the subsidiary equations we have two methods:

Method – I (Method of Grouping):

If it is possible to separate variables in eq. $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$ then, consider any two equations, solve them by Integrating. Take any two members say first two or last two or first and last members. Now consider the first two members $\frac{dx}{P} = \frac{dy}{Q}$. If *P* and *Q* contain *z*(other than *x* and *y*) try to eliminate it. Now direct integration gives

 $u(x, y) = c_1$. Similarly take another two members $\frac{dy}{Q} = \frac{dz}{R}$. If Q and R contain x(other than y and z) try to

eliminate it.

Now direct integration gives $v(y, z) = c_2$. Therefore solution of the given Lagrange's equation is $\Phi(u, v) = 0$.

Q 5. yzp + xzq = xy [June 15] [Hint: $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} \Rightarrow \frac{dx}{yz} = \frac{dy}{zx} = \frac{dz}{xy}$ take two pairs and solve Ans: $\Phi(x^2 - y^2, y^2 - z^2) = 0$] Q 6. Solve $y^2zp + x^2zq = xy^2$ Ans: $f(x^3 - y^3, x^2 - z^2) = 0$ [DEC. 2005,2007,JUNE 2008, APRIL 2009, Dec. 2010,11,13, June 2015] [Hint: $\Phi(x^3 - y^3, x^2 - z^2) = 0$ take first and last two pairs and solve Ans: $\Phi(x^3 - y^3, x^2 - z^2) = 0$]

Q7. Solve $xp + yq = 3z$ Ans: $f(\frac{x}{y}, \frac{x^3}{z}) = 0$	[June 2014]
Q 8. Solve $yzp + xzq = xy$ Ans: $f(x^2 - y^2, y^2 - z^2) = 0$	[RGPV DEC. 2006, June 2015, June 17]
Q 9. Solve $yq - xp = z$ Ans:	[RGPV Nov. 18]

Method-II (Method of Substitution):

In some problems, it is possible to solve any two of the equations $\frac{dx}{P} = \frac{dy}{Q}$

(or) $\frac{dy}{Q} = \frac{dz}{R}$ (or) $\frac{dz}{R} = \frac{dx}{P}$ In such cases, solve the differential equation, get the solution and then substitute in

the other differential equation.

- Solve $p+3q=5z+\tan(y-3x)$ Ans: $f(y-3x,e^{-5x}{5z+\tan(y-3x)})=0$ **Q 10.**
- Solve $pz qz = z^2 + (x + y)^2$ [DEC. 2005, JUNE 2007, DEC. 2010June 2011, 2012] 0 11.

Q 12. Solve
$$pzx - qyz = y^2 - x^2$$

Solve $x^2 p + y^2 q = nxy$ Ans: $f(\frac{1}{y} - \frac{1}{x}, z - \frac{nxy}{y - x} \log \frac{y}{x}) = 0$ [Hint: sol. $\frac{1}{y} - \frac{1}{x} = c_1$ use it for second sol] 0 13.

Method-III (Method of multiplier's)

Choose any three multipliers *l*, *m*, *n* may be constants or function of *x*, *y* and *z* such that in

$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} = \frac{l\,dx + m\,dy + n\,dz}{l\,P + m\,Q + n\,R} = \frac{l\,dx + m\,dy + n\,dz}{0} = k$$

In this, we have to choose l, m, n so that denominator = 0. That will give us solution by integrating l dx + m dy + n dz

the expression $lP + mQ + nR = 0 \implies ldx + mdy + ndz = 0$ Now direct integration gives $u(x, y, z) = c_1$. similarly choose another set of multipliers l', m', n' such that

$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} = \frac{l'dx + m'dy + n'dz}{l'P + m'Q + n'R} = \frac{l'dx + m'dy + n'dz}{0}$$

l'dx + m'dy + n'dz = 0 (as explained earlier), Now direct integration gives $\mathbf{v}(x, y, z) = c_2$.

Therefore solution of the given Lagrange's equation is $\Phi(u, v) = 0$.

Q 14. Solve
$$x^2(y-z)p + y^2(z-x)q = z^2(x-y)$$
 Ans : $f(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}, xyz) = 0$.[**RGPV DEC. 2008**]

[Hint: use $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} \Rightarrow \frac{dx}{x^2(y-z)} = \frac{dy}{y^2(z-x)} = \frac{dz}{z^2(x-y)}$ taking $\frac{1}{x^2}, \frac{1}{y^2}, \frac{1}{z^2}$ and $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ as multipliers

Q 15.	• Solve $x(y^2 + z)p - y(x^2 + z)q = z(x^2 - y^2)$ Ans : $f(x^2 + y^2 - 2z, xyz)$)=0 [Nov. 2019(o)]		
	[Hint: use x,y,-1 and $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ as multipliers]			
Q 16.	$f(x_1, y_2, z_3, z_4, z_5) = 0$	PV JUNE. 2007]		
	[Hint: use 1,1,1 and $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ as multipliers]			
Q 17.	(r-y)n+(r+y)a-2rz	. 2019]		
Q 18.	B. Solve $(\frac{y-z}{yz})p + (\frac{z-x}{zx})q = \frac{x-y}{xy}$ Ans: $f(x+y+z, xyz) = 0$ [RG	PV JUNE2007, 2009]		
	[Hint : multiply the eq. by xyz then it reduce to previous qus.]			
Q 19.	Solve $(mz - ny)p + (nx - lz)q = ly - mx$ Ans: $f(x^2 + y^2 + z^2, lx + my + nz) = 0$	0		
_	[Hint: use x, y, z and l, m, n as multipliers]			
Find	l one solution by linear / homogenous eq.:			
Q 20.	b. Solve $(z^2 - 2yz - y^2)p + (xy + zx)q = xy - zx$ Ans: $f(x^2 + y^2 + z^2, y^2 - z^2 - z^2)$	2yz = 0		
		C. 2004, Dec. 2014]		
[Hint: $\frac{1}{(z)}$	$\frac{dx}{(z^2 - 2yz - y^2)} = \frac{dy}{(xy + zx)} = \frac{dz}{xy - zx} = \frac{xdx + ydy + zdz}{0} \text{ and solve } \frac{dy}{(xy + zx)} = \frac{dz}{xy - zx} \text{ using}$	homogenous eq. ,]		
Q 21.	Q 21. Solve $(z^2 + y^2 - x^2)p - 2xyq + 2zx = 0$ Ans: $f(\frac{x^2 + y^2 + z^2}{z}, \frac{y}{z}) = 0$ [June04,feb06,dec14]			
Q 22.	2. Solve $y^2 p - xyq = x(z-2y)$ Ans: $f(x^2 + y^2, yz - y^2) = 0$ [JUNE 2003, DE	C. 2005, June 2011]		
	lint:			
Method I	IV: Add or Subtract two or more terms to make integrable pairs:			
Q 23.	B. Solve $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$ [Hint $\frac{dx - dy}{x - y} = \frac{dy - dz}{y - z} = \frac{dz - dx}{z - x}$]Ar	$f(\frac{x-y}{y-z},\frac{y-z}{z-x}) = 0$		
	[DEC. 2002, 2003, JUNE 20	007, 2008,June 2013]		
Q 24.	Solve $(y+z)p + (z+x)q = (x+y) \left[\text{Hint:} \frac{dx - dy}{-(x-y)} = \frac{dy - dz}{-(y-z)} = \frac{dx + dy + dz}{2(x+y+z)} \right]$	RGPV SEP. 2009]		
Q 25.	Solve $x^2 p + y^2 q = (x+y)z$ Ans: $f\left(\frac{x-y}{xy}, \frac{xy}{z}\right) = 0$	[Feb. 2005, 2010]		
	[Hint: find first sol. $\frac{1}{x} - \frac{1}{y} = c_1$ from first pairs, and use $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ as multipliers	for second sol.]		
Q 26.	Solve $(x^2 - y^2 - z^2)p + 2xyq = 2xz$ Ans: $f\left(x^2 + y^2 + z^2, \frac{y}{z}\right) = 0$			
	[Hint: $\frac{dy}{y} = \frac{dz}{z}$ and $\frac{xdx + ydy + zdz}{-x(x^2 + y^2 + z^2)} = \frac{dz}{-2xz}$] [RGPV JUNE 2004,JAN. 2	006, Dec. 2007, Dec. 2014]		

Dr. Akhilesh Jain , Department of Mathematics, CIST , Bhopal (akhiljain2929@gmail.com): 9827353835 !Page 5

Q 27. Solve
$$(y+z)p + (z+x)q = x+y$$
 [sep.2009] [Hint: $\frac{dx+dy+dz}{2(x+y+z)} = \frac{dx-dy}{-(x-y)} = \frac{dy-dz}{-(y-z)}$]
Ans: $\phi\left(\frac{x-y}{y-z}, (x-y)^2(x+y+z)\right) = 0$

FIRST ORDER AND HIGHER DEGREE PARTIAL DIFFERENTIAL EQUATIONS:

NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS of ORDER FIRST :

Type 1: Standerd form $-\mathbf{I}$: f(p, q) = 0

Equations of the type f(p, q) = 0 i.e. equations containing p and q only Let the required solution be z = ax+by+c

Since
$$\frac{\partial z}{\partial x} = a$$
 and $\frac{\partial z}{\partial y} = b$

Substituting these values in f(p, q) = 0, we get f(a,b) = 0From this, we can obtain b in terms a of (or) a in terms of b

Let then the required solution is $z = ax + \phi(a)y + c$

Note: Since, the given equation contains two first order partial derivatives, the final Solution should contain only two constants.

Q 28. Solve $p^2 + q^2 = m^2$ [Ans: Complete Sol.: $z = ax + \sqrt{m^2 - a^2} y + c$, General Sol $z = ax + \sqrt{m^2 - a^2} y + \varphi(a)$ diff. wrt. "a" and on elimination of "a". Singular sol not exist for standard form -I]

Q 29. Solve
$$q = pq + p^2$$
 [Ans: Complete Sol.: $z = ax + \frac{a}{1-a}y + c$, $a \neq 0$,

Q 30. Solve
$$p^2 + q^2 = npq$$
 [Ans: Complete Sol.: $z = ax + \frac{a}{2}[n \pm \sqrt{n^2 - 4}]y + c$,

Type 2: Standerd form -II : f(z, p, q) = 0

Let us consider the equation of the type f(z, p, q) = 0(1) Let z is a function of u and u=x+ay *i.e.* z=z(u) and u=x+ay

Now
$$p = \frac{\partial z}{\partial x} = \frac{dz}{du} \cdot \frac{\partial u}{\partial x} = \frac{dz}{du} \cdot 1 = \frac{dz}{du}$$
 and $q = \frac{\partial z}{\partial y} = \frac{dz}{du} \cdot \frac{\partial u}{\partial y} = \frac{dz}{du} \cdot a = a \frac{dz}{du} [u = x + ay, \frac{\partial u}{\partial a} = 1 and \frac{\partial u}{\partial y} = a]$

Then by (1) $\left[f(\frac{\partial z}{\partial u}, a \frac{\partial z}{\partial u}, z) = 0 \right]$ is 1st order differential equation in terms of dependent variable z and independent variable u

independent variable *u*.

Solve this differential equation and finally substitute u=x+ay gives the required solution.

Q 31.Solve $p^2 = zq$ [Ans: $z = be^{ax+a^2y}$]Q 32.Solve $9(p^2z+q^2) = 4$ [Ans: $(z+a^2)^{3/2} = (x+ay+b)$]Q 33.Solve $z^2 = p^2 + q^2$ Ans: $(x+ay+b)^2 = 4z(1+a^2)$ [JUNE 2011]

Q 34. Q 35.	Solve $p^3 + q^3 = 27 z$ Solve $p(1+q) = zq$	Ans: $(1+a^3)z^2 = 8(x+ay+b)^3$ [Ans: $az-1=be^{x+ay+b}$]	[June 2013]. [June12]	
Type 3: Star	nderd form –III : $f_1(p,x) = f_2(y,q)$			
Let $f_I(p,x)$ Now, writin Now, $f(P, Q)$ From $\int dz =$	Let us consider the differential equation is of the form $f_1(p,x) = f_2(y,q)$ Let $f_1(p,x) = f_2(y,q) = a$ (say) Now, writing p in terms of x and q in terms of y . Now, $f(P,Q) = 0$, where p is in terms of x and q is in terms of y From $\int dz = \int p dx + \int q dy + c$, we get the required complete solution. Note: This method is used only when it is possible to separate variables.			
Q 36.	Solve $pe^y = qe^x$	Ans: $z + b = a(e^{x} + e^{y})$		
Q 37.	Solve $p^2 + q^2 = x + y$	Ans: $z+b = \frac{2}{3} \left[(x+a)^{3/2} + (y-a)^{3/2} \right]$		

Q 38. Solve
$$q=px+q^2$$

Q 39. Solve $q-p=y-x$
Q 40. Solve $p^2-q^2=x-y$
Ans: $z=a\log x+\frac{1\pm\sqrt{1-4a}}{2}y+b$ [June 2011]
Ans: $z=\frac{2}{3}[(x+a)^{3/2}+(y+a)^{3/2}]+b$ [June 03,08,09]

Type 4: Standard form –IV : z = px + qy + f(p, q) [*Caliraut's equation*]

Equation of the form z = ax + by + c then $\frac{\partial z}{\partial x} = a \Longrightarrow p = a$ and $\frac{\partial z}{\partial y} = b \Longrightarrow q = b$

Hence required solution is z = ax + by + f(a,b), *i.e directly put p=a and q=b in the given equation*. Singular Solution: Differentiate complete solution partially w.r.t. a and b and eliminate a and b to get singular solution.

Q 41. Solve
$$z = px + qy + \log pq$$
 [Ans: Complete Sol. $z = ax + by + \log ab$ for Singular sol.
 $a = \frac{-1}{x}, b = \frac{-1}{y}$]
Q 42. Solve $z = px + qy + p^2 + q^2$ [Ans: Complete Sol. $z = ax + by + a^2 + b^2$ for Singular sol.
 $a = \frac{-x}{2}, b = \frac{-y}{2}$]
Q 43. Solve $z = px + qy + pq$ [Ans: Complete Sol. $z = ax + by + ab$ for Singular sol. $a = -y, b = -x$]
Q 44. Solve $(p-q)(z - px - qy) = 1$ Ans: Complete Sol. $z = ax + by + \frac{1}{a - b}$ [Dec.2007]
Q 45. Solve $(px+qy-z)^2 = 1 + p^2 + q^2$ Ans: Complete Sol. $z = ax + by \pm \sqrt{1 + p^2 + q^2}$
Q 46.

Type 5: Equations Reducible to Standard Form:

Q 47. Solve
$$x^2p^2 + y^2q^2 = z^2$$
 Ans:, $\log z = a \log x + \sqrt{1-a^2} \log y + c_1$ [Hint: Reduce in form -I]
[RGPV DEC. 2002, Feb.2005, June 2008, Feb. 2010, Dec.2011,2012, June17]
Q 48. Solve $(x + y)(p + q)^2 + (x - y)(p - q)^2 = 1$ Ans:, $z = a\sqrt{(x + y)} + \sqrt{1-a^2} \sqrt{(x - y)} + c_1$
[Hint: Reduce in form -I, Put $x + y = X^2$, $x - y = Y^2$] [RGPV. JUNE 2006]
Q 49. Solve $(y - x)(qy - px) = (p - q)^2$ Ans:, $z = b^2(x + y) + bxy + c$
[Hint: Reduce in form -I, Put $X = x + y$, $Y = xy$] [RGPV]
Q 50. Solve $z^2(p^2 + q^2) = x^2 + y^2$
[Hint: Reduce in form -III, $\left(\frac{z}{1}\frac{\partial z}{\partial x}\right)^2 + \left(\frac{z}{1}\frac{\partial z}{\partial y}\right)^2 = x^2 + y^2$, Put zdz=dZ, dx=dX, dy=dY
then it becomes $P^2 + Q^2 = x^2 + y^2$]
Ans: $z^2 = x\sqrt{(a + x^2)} + a \log\{x + \sqrt{(a + x^2)}\} + y\sqrt{y^2 - a} - a \log\{y + \sqrt{y^2 - a}\} + b$ [June 2003, 2008, 2009]
Q 51. Solve $z(p^2 - q^2) = x - y$ [Nov. 2019 (o)]
[Hint: Reduce in form -III, $\left(\frac{\sqrt{z}}{1}\frac{\partial z}{\partial z}\right)^2 - \left(\frac{\sqrt{z}}{1}\frac{\partial z}{\partial y}\right)^2 = x - y$, Put $\sqrt{z}dz = dZ$, dx=dX
dy=dY then it becomes $P^2 - Q^2 = x - y$ [Ans: $z = \frac{2}{3}(x + a)^{3/2} + \frac{2}{3}(y + a)^{3/2} + b$
Q 52. Solve $2(z + xp + yq) = yp^2$

CHARPIT'S METHOD: This is a general method to find the complete integral of the non-linear PDE of the form f(x,y,z,p,q)=0. The Auxiliary Equations are given by

$$\frac{dx}{-\frac{\partial f}{\partial p}} = \frac{dy}{-\frac{\partial f}{\partial q}} = \frac{dz}{-p\frac{\partial f}{\partial p} - q\frac{\partial f}{\partial q}} = \frac{dp}{p\frac{\partial f}{\partial z} + \frac{\partial f}{\partial x}} = \frac{dq}{q\frac{\partial f}{\partial z} + \frac{\partial f}{\partial y}}$$

Here we have to take the terms whose integrals are easily calculated, so that it may be easier to solve p and q.

Finally substitute in the equation dz=p dx + q dy. Integrate it, we get the required solution.

Q 53. Using the Charpit's method Solve
$$z = px + qy + p^2 + q^2$$
 [RGPV JUNE 2001]
[Hint: $\frac{dx}{-(x+2p)} = \frac{dy}{-(y+2q)} = \frac{dz}{-p(x+2p)-q(y+2q)} = \frac{dp}{0} = \frac{dp}{0}$
solve last pairs $\frac{dp}{0} = \frac{dq}{0}$ we get p=a, and q=b
Put this value in question find q in terms of x and y, i.e. Complete sol.
 $\int dz = \int pdx + \int qdy + c \Rightarrow$

Dr. Akhilesh Jain , Department of Mathematics, CIST , Bhopal (akhiljain2929@gmail.com): 9827353835 !Page 8

Q 54.	Using the Charpit's method Solve $(p^2 + q^2)y = qz$ Ans:	$z^2 - a^2 y^2 = (ax+b)^2$ WE 2007,2012,Dec. 2012,2013,June 2015]	
Q 55.	Using the Charpit's method Solve $px+qy = pq$	[RGPV JAN 2007, june17]	
[Hint: $\frac{dx}{-(x+q)}$	$=\frac{dy}{-(y+p)}=\frac{dz}{-px-pq-qy-qp}=\frac{dp}{p}=\frac{dp}{q}$		
solve last pairs $\frac{dp}{p} = \frac{dq}{q}$ we get p=aq			
Put this value	in question find q in terms of x and y , i.e. $q = -\frac{ax + y}{a}$ and the	$p = aq = -a(\frac{ax+y}{a}) = -(ax+y)$	
Complete sol. $\int dz = \int p dx + \int q dy + c \Rightarrow z = e^{xy} f(x - y) \text{ or } a dz = -(ax + y)a dx - (ax + y)dy$			
Q 56.	Using the Charpit's method Solve $2z + p^2 + qy + 2y^2 = 0$	Ans: $z = (ax+b)y^{-2} + \frac{1}{2}(a^2 - y^2)y^{-4}$	
		[June 2006]	
Q 57.	Using the Charpit's method Solve $p^2 + qy = z$		
Q 58.	Using the Charpit's method Solve $2(z + xp + yq) = yp^2$	Ans: $z = \frac{ax}{y^2} - \frac{a^2}{4y^3} + \frac{b}{y}$ [June 2006]	
Q 59. <u>Q 60.</u>	Using the Charpit's method $z=pq$ Solve by charpit's method $q=3p^2$	[Nov. 2019]	

LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS : Linear 2nd-Order PDE's

Let u is the dependent variable and x and y are the independent variables

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + D = 0$$

where

The PDE is nonlinear if A, B, or C include u, $\partial u/\partial x$, or $\partial u/\partial y$, or if D is nonlinear in u and/or its first derivatives.

u(x,y), A(x,y), B(x,y), C(x,y), and D(x,y,u, $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$)

Classification: Similar to the technique used to obtain an analytical solution,

$B^2 - 4AC < 0$	> Elliptic	(e.g. Laplace Eq.)
$B^2 - 4AC = 0$	> Parabolic	(e.g. Heat Eq.)
$B^2 - 4AC > 0$	> Hyperbolic	(e.g. Wave Eq.)

. Solution of Homogeneous Linear PDE with constant coefficients:

$$A_0 \frac{\partial^n z}{\partial x^n} + A_1 \frac{\partial^{n-1} z}{\partial x^{n-1} \partial y} + \dots + A_n \frac{\partial^2 Z}{\partial x^{n-2} \partial y^2} + \dots + A_n \frac{\partial^n z}{\partial y^n} = f(x, y)$$

Where A_0, A_1, \ldots, A_n are constants.

The **General solution** of above equation is $z = z_c + z_p = C.F. + P.I.$

Step-I : To find Complementary function(Integral) Change the given equation in D-Notation by putting

$$\frac{\partial}{\partial x} = D, \ \frac{\partial}{\partial y} = D', \ \frac{\partial^2}{\partial x^2} = D^2, \ \frac{\partial^2}{\partial y^2} = D'^2, \ \frac{\partial^2}{\partial x \partial y} = DD', \ \frac{\partial^3}{\partial x^2 \partial y} = D^2D', \ \frac{\partial^3}{\partial x \partial y^2} = DD'^2$$

Form auxillary equation by putting D = m, D' = 1

If roots of auxiliary equation are (i) Distinct, say m_1, m_2 then $C.F. = \phi_1(y + m_1 x) + \phi_2(y + m_2 x)$

If roots of auxiliary equation are (ii) Equal, say $m_1=m_2=m$ then $C.F. = \phi_1(y+mx) + x\phi_2(y+mx) +$

Note: There is no separate rule for imaginary roots.

Step-II : To find P.I.(Particular integral/ Solution)

When
$$f(x,y) = e^{a+byx}$$
Put $D = a$, and $D'=b$
when $F(D,D') = F(a,b) \neq 0$ $P.I. = \frac{1}{F(D,D')}e^{ax+by} = \frac{e^{ax+by}}{F(a,b)}$ Q 61.Solve $\frac{\partial^2 z}{\partial x^2} + 2\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = e^{3x+2y}$
[June 2015][June 2015]Solve $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = e^{x+2y}$
 $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = e^{x+2y}$ [Nov. 2018]Exceptional case:Nov. 2018]When $f(x,y) = e^{a+byx}$
(Exceptional case
When
 $F(D,D') = F(a,b) = 0$ Put $D = D + a$ and $D' = D' + b$ and
Solve the equation for $1 = x^0$ or e^{0x+0y} $P.I. = \frac{1}{F(D,D')}e^{ax+by} = e^{ax+by} \frac{1}{F(D+a,D'+b)} 1$ Q 63.Solve $(D^3 - 4D^2D + 5DD^{*2} - 2D^{*3})z = e^{2x+y}$
(Ans: $z = \phi_1(y + 1x) + x\phi_2(y + x) + \phi_3(y + 2x) + \frac{x^5}{20}$ [June03,08,16]Q 64.Solve $\frac{\partial^2 z}{\partial x^2} - 4\frac{\partial^2 z}{\partial x \partial y} + 4\frac{\partial^2 z}{\partial y^2} = e^{2x+y}$
(Ans: $z = \phi_1(y + 2x) + x\phi_2(y + 2x) + \frac{x^2}{2}e^{2x+y}$
[IDec.11]Q 65.Solve $(D^2 - 2DD' + D'2)z = e^{x+y}$
(Ans: $RGPV$ June . 2007]When
 $f(x,y) = sin(ax+by)$
or $cos(ax+by)$
or $cos(ax)$
(Same for $cosax)$
(Same for $cosax)$
(Same for $cosax)$
(Except $f(-a^2, -b^2) \neq 0$ $P.I. = \frac{1}{F(-a^2, -ab, -b^2)}$

Dr. Akhilesh Jain , Department of Mathematics, CIST , Bhopal (akhiljain2929@gmail.com): 9827353835 !Page 10

Q 66. Q 67. Q 68. Q 69. Q 70. Q 71.	Find the particular integral of $\frac{\partial^3 z}{\partial x^3} - 7 \frac{\partial^2 z}{\partial x \partial y^2} - 6 \frac{\partial^2 z}{\partial y^3} = sin(x+2y)$ [Jur Solve $r+t = cos mx cos ny$ Solve $(D^2 - DD')z = sin x cos 2y$ Solve $(D^2 - DD')z = cos x cos 2y$ Solve $(D^2 - DD')z = cos (x+2y)$ [RGPV Dec. 2005, 2007, Dec. 13, New Solve $(D^2 - DD')z = cos (x+2y)$ Find P.I. $(D^3 - 7DD'^2 - 6D'^3)z = sin (x+2y)$ [Ans: $z = \frac{1}{1575}[27 cos (x+2y) - 48]$	
When $f(x,y) = x^m y^n$	Expand Series $F(D/D')^{-1}$ or using $F(D'/D)^{-1}$ $(1-x)^{-1} = 1+x+x^2+x^3$ $(1+x)^{-1} = 1-x+x^2-x^3$	
Q 72.	Solve $(D^2 + 3DD' + 2D'^2)z = 24xy$ [Ans: $z = \phi_1(y - x) + \phi_2(y - 2x) + 4x^3y$	$y - 3x^4$ 1(Dec 02)
Q 73.	Solve $(D^2 - 2DD' + D'^2)z = 12xy$ [Ans:][June17]
Q 74.	Solve $(D^2 - DD' - 6D'^2)z = xy$ [Ans:] [Nov. 2019]
Q 75.]	Solve $(D^3 - D^{13})z = x^3y^3$ [Ans: $z = \phi_1(y+1x) + \phi_2(y+wx) + \phi_3(y+w^2x) + \phi_3$	
Q 76.	Solve $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = x + y$	[Nov.18]
Q 77.	Solve $(D^2 + 3DD' + 2D'^2)z = x + y$	
Q 78.	Solve $\frac{\partial^2 z}{\partial x^2} + 3 \frac{\partial^2 z}{\partial x \partial y} + 2 \frac{\partial^2 z}{\partial y^2} = x - y$ [Ans: $z = \phi_1(y - x) + \phi_2(y - 2x) + \frac{1}{6}$	[Nov.2019(o)] $[4x^3 - 3x^2y]$
	$(D^2 - 6DD' + 0D'^2)_7 = 12x^2 + 26x^3$	[June12]
Q 79. Q 80.	Solve $(D^2 - 6DD' + 9D'^2)z = 12x^2 + 36xy$ Solve $(D^2 + 2DD' + D'^2)z = x^2 + y^2 + xy$	
Q 80.	Solve $(D^3 + D^2D' - DD'^2 - D^3)z = e^{2x+y} + \cos(x+y)$ [RGPV Jan. 2007	[RGPV Sep 2009]
Q 82.	Solve $(D - D' - 1)(D - D' - 2)z = e^{3x-y} + x$ Solve $(D - D' - 1)(D - D' - 2)z = e^{3x-y} + x$] [RGPV June 2014]

Short Methods for Finding P.I.(Only for Homogeneous PDE)			
4			
$P.I. = \frac{1}{F(D,D')}\phi(ax+by) = \frac{1}{F(a,b)} \iiint \qquad \int \phi(ax+by)dv^n \text{ where } v = ax+by \text{ and } n = \text{order of diff. equation.}$			
	in be apply for all types of function		
Exceptional c	case: if $F(a,b)=0$, Factorize the equation $F(a$	quation in the form of $(bD-aD')$ and use formula	
$P.I. = \frac{1}{(bD - aD')^n} \phi(ax + by) = \frac{x^n}{b^n \cdot n!} \phi(ax + by)$			
Q 83. <i>r-t=x-y</i>	Ans:	: $z = \phi_1(y-x) + \phi_2(y+x) + \frac{x}{4}(x-y)^2$]	
Q 84. $2r - s - 3$	$3t = \frac{5e^x}{e^y}$	Ans : $z = \phi_1(y + \frac{3}{2}x) + \phi_2(y - x) + \frac{x^1}{(-1)^1 1!} e^{x - y}$]	
General Formula	Put $y=c-mx$, where c is a constant	$\frac{1}{(D-mD')}f(x,y) = \int f(x,c-mx)dx$	
		s: $z = \phi_1(y - 3x) + \phi_2(y + 2x) - y\cos x + \sin x$]	
[Hint: $P.I. = \frac{1}{(D+3D')(D-1)}$	$\frac{1}{2D'}y\cos x = \frac{1}{(D+3D')} \left(\frac{1}{(D-2D')}y\cos x\right)$	$P.I. = \frac{1}{(D+3D')} \left(\int (c-2x) \cos x dx \right) = \frac{1}{(D+3D')} \left(y \sin x - 2 \cos x dx \right),$	
again apply same	formula for remaining factor	[RGPV Dec. 2002, June 2004 ,June . 2006,09,11,13]	
Q 86. Solve <i>r</i>	$t-s-2t = (y-1)e^x$	[RGPV Jan.2006, Feb	
2010]			
-	$y^{2} + DD' - 2D'^{2})z = \sqrt{2x + y}$ [4]	Ans : $z = \phi_1(y+x) + \phi_2(y-2x) + \frac{1}{15}(y+2x)^{3/2}$	
[Hint: $P.I. = \frac{1}{(D+2D')(D-1)}$	$\frac{1}{D'}\sqrt{2x+y} = \frac{1}{(D+2D')} \left(\frac{1}{(D-D')}\sqrt{2x+y}\right)$	$P.I. = \frac{1}{(D+2D')} \left(\int (c+x)^{1/2} dx \right) = \frac{1}{(D+2D')} \left(\frac{(c+x)^{3/2}}{3/2} \right),$	
Q 88. Solve <i>r</i>	-2s+t=tan(y+x)	[Ans: $z = \phi_1(y+x) + x\phi_2(y+x) + \frac{1}{2}x^2 \tan(x+y)$	
Q 89. Solve 2 <i>n</i>	$-5s + 2t = 5\sin(2x + y)$		
[Hint: $f(-a^2, -b^2)=0$ hence	use general formula $P.I. = \frac{1}{(2D - D')(2D - D')}$	$\frac{1}{(D-2D')}\sin(2x+y) = \frac{1}{(2D-D')}\left(\frac{1}{(D-2D')}\sin(2x+y)\right)$, put y=c-	
$mx=c-2x$ [Ans: $z=\phi_1$	$(2y+x) + \phi_2(y+2x) - \frac{5}{3}x\cos(y+x)$	-2x)	